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SUMMARY:  

Lower-level turbulence has a significant impact on the wind environment, pollutant dispersion, thermal comfort, 

and vehicle and low-rise structure performance. However, capturing small-scale changes in low-level turbulence is 

challenging due to its high variability and sudden transient nature. To address this issue, a long period nested LES 

with input from a mesoscale WRF model was performed for 25 days, and deficiencies were highlighted and corrected 

using a field inverse machine learning technique. The model's performance was verified by comparing results with 

data from a 60m sonic anemometer tower, with a focus on turbulent quantities' magnitude. The study was conducted 

during late afternoon and sunset when turbulent processes are most volatile. Incorporating machine-trained data 

allowed the model to resolve eddy energy within the first tens of meters of the ground, even with a lifetime of only a 

few hours. Although LES underestimates turbulent kinetic energy during the day, this model addresses critical gaps 

in LES models of environmental flows. 
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1. INTRODUCTION 
To study atmospheric conditions over complex terrain and account for land use and land cover 
change on atmospheric boundary layer flow, a combination of Large Eddy Simulation (LES) and 
Weather Research and Forecasting (WRF) models (Kosović et al., 2020) is necessary. The WRF 
model's 1D parameters are only applicable to scales of a few kilometers, so LES is needed to model 
turbulent fluxes at smaller scales. However, there are still gaps in modeling fluxes over wide scale 
ranges and simultaneously resolving mean quantities of turbulence and heat flux (Moeng et al., 
2007). Adding a layer of machine-trained data using an inverse ML model can help address these 
gaps by modeling operational quantities such as eddy viscosity and turbulent kinetic energy as 
physical processes (Muñoz- Esparza et al., 2014;). A long-term LES-WRF combined with an 
inverse ML model is conducted for 25 days to resolve very low-level turbulence properties, 
verified against anemometer tower data at 60m height within 110m height. This study summarizes 
previous theoretical work and highlights the need for additional high-resolution satellite data. 

 

2. SITE AND METHODS 

2.1 Field Location 

The site selected for the study was the Andaman strait, that has a complex terrain, consisting of 
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plains, hills and valleys. The location of the tower is labelled D4 in Fig. 1, and the measurement 

sensors of the tower are listed in Table 1, to measure the 3 wind directional components, u,v,w at 

10 Hz frequency. The measurements were not taken during rainfall periods. The measurement 

period was from 14 June 2022 to 8 July 2022, with measurements at heights of z30, z45 and z60. 

Filters and corrections were applied as per the study by (Lee et al., 2017). 
 

 

Figure 1. Terrain and site location of model location (Andaman Strait) 

 

Table 1. Tower Sensor Data 

Level Height(m) Sensors Time 
period 

Z30 29.4 3D sonic 
anemometer 
 

 

Z45 45.8 Sonic 
anemometer 
wind vane 
 

14 
June 
22-8 
July 22 

Z60 61.4 3D sonic  
anemometer 

 

 

2.2 Application of Inverse ML 

The field inverse model, works along the existing turbulence models of LES and augments them. 

The approach provides resolution of inverse problems to replace the discrepancies in LES 

parameters and minimizing the difference between data and predictions. Wherein, the quantities 

like TKE from LES is reproduced using backpropagation ML algorithm to replace 𝑘 in 𝑘 − 𝜔 

equation, and so on in other governing equations of LES. The entire process is depicted in Fig. 2 

(a). Deterministic mode of solving is utilized along with discrete adjoints optimization is conducted 

(Constantine et al., 2016). The process involves, feature selection, cross validation and a 

backpropagation based neural network algorithm. 

 

 



 
 
 
 
 
 
 
 
 

 

 

 

Figure 2. LES-ML workflow and adjoint backpropagation algorithm 

 
2.3 Coupled WRF-LES 

The WRF modelling is carried out in two stages; first is a meso scale 9 km to 1 km two-way nestled 

feedback ensemble. And a microscale stage (LES) of 333 m to 111 m by applying meso output in 

the lateral and initial boundaries. In LES, a 3D turbulence closure, along with a prognostic TKE 

equation is used (Lilly, 1967). The WRF-LES model setup with the domain parameters are given 

in Table 2. 

 
Table 2. WRF-LES model setup (nx* ny*nz are number of grid points) 

Domain nx* 
ny*nz 

Grid Mode PBL 
scheme 

D1  9km RANS MYJ(Mellor– 
Yamada– 
Janji ́c) 

D2  3km RANS MYJ 
D3 
D4 
D5 

99*99*38 1km 
333m 
111m 

RANS 
LES+ML 
LES+ML 

MYJ 

 

3. CONCLUSION 

This section provides basic model outputs. Fig. 3 shows wind roses at 30 m, with similar results 

at 45 m and 60 m verified by tower observations. The LES-ML output fits closely.  Mean bias 

and RMSE values were calculated and will be presented in the full paper. 

 

 

Figure 3. Wind rose of (a) tower data (b) MESO output (c) LES-ML model output 



Wind speed differences between MESO and LES-ML were minimal (0.5-1.2 m/s), but MESO 
under- presented wind direction by 4˚ at 111 m. Fig. 4 shows the TKE plot, indicating MESO 
failed to capture turbulence peaks, while the LES-ML model reproduced them. 
 
 

 

 
 

 
 

 

                Figure 4. TKE spectrum from tower, MESO and LES-ML output at z30 for 111m grid 

Fig. 5, depicts the power spectrum of turbulent velocity field, the field ranges from 25 days to 10 

mins. It can be inferred that the LES-ML reproduces and sustains the eddies with lifetime less than 

2-3 hrs, whereas it decays in MESO alone. MESO is unable to resolve energies for frequency 

higher than 10-4(periods lesser than about 2hrs). 

 

Figure 5. Turbulence spectrum at z30 
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